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Abstract

This paper presents a novel Multi-criteria Optimal Location Query (MOLQ), which can be
applied to a wide range of applications. After providing a formal definition of the novel
query type, we propose an Overlapping Voronoi Diagram (OVD) model that defines OVDs
and Minimum OVDs (MOVDs), and an OVD overlap operation. Based on the OVD model,
we design advanced approaches to answer the query in Euclidean space. Due to the high
complexity of Voronoi diagram overlap computation, we improve the overlap operation by
replacing the real boundaries of Voronoi diagrams with their Minimum Bounding Rectan-
gles (MBR). Moreover, if there are changes to a limited number of objects, re-evaluating
queries over updated object sets would be expensive. Thus, we also propose an MOVD
updating model and an advanced algorithm to incrementally update MOVDs to avoid the
high cost of query re-evaluation. Our experimental results show that the proposed algorithms
can evaluate the novel query type effectively and efficiently.

Keywords Voronoi diagram - Optimal location query

1 Introduction

Numerous optimal location queries considering a wide range of criteria have been exten-
sively studied. As an example of location decision making problems, Multi-criteria Optimal
Location Query, or MOLQ in short, was proposed to find a location by taking multiple fac-
tors (e.g., distance and reputation) into account [56]. Specifically, given a family of object
sets in different types, the query returns an optimal location, which minimizes the total
weighted distance from the location to one object in each type.

Making residential location decisions is a typical example of MOLQ that finds home
locations with maximum residential satisfaction [36]. In order to attract more customers, an
optimal location would be selected for minimizing the total distance from the location to a
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Fig. 1 Anexample of residential location selection. The object weights are indicated as < w’, w® >. Smaller
weights indicate higher preference

supermarket, an elementary school, and a gas station. Figure 1 displays a simple example.
There are two schools, two gas stations, and two supermarkets in the city. Their locations
are indicated by symbols. The figure also shows three potential community locations. Lines
connect communities to their closest gas station, school, and supermarket, respectively. The
numbers on the lines indicate the distance between two locations in Euclidean space. If
the optimal location for a new community is the place that minimizes the total distance to
its closest school, gas station, and supermarket, the best place is Community 1, the total
distance (16) of which is shorter than that of Community 2 (19) or Community 3 (18).

Tradeoffs of multiple factors are actually considered in real residential location selec-
tion [47]. The importance of schools, gas stations, and supermarkets varies greatly among
people. For example, some people may prefer living near a school because it is convenient
to drive their children to school. In addition, objects of a particular type are considered dif-
ferently. When selecting a school, the ones that provide higher quality programs are more
attractive than others. In order to take these differences into consideration, a rype weight w'
and object weight w° are associated with each object. Providing objects with weights in the
location selection allows users to prioritize objects based on their preference. If the weights
< w', w? > customized by users are as indicated in Fig. 1 (smaller weights indicate higher
preference), the best choice is Community 3 (59), which has the smallest sum of weighted
distance to the nearest school (5 x 3 x 1 = 15), gas station (8 x 1 x 3 = 24), and super-
market (5 x 2 x 2 = 20). We assume that the weighted distance of a community and an
object is calculated as the product of the distance and the two weights. Instead of associat-
ing a single weight with an object, a type weight and object weight are set individually in the
example because various weight functions are allowed to be applied to the rype weight and
object weight individually in the query. This will be described in Section 3. In the example,
a multiplicatively-based weight function is applied to both type weight and object weight.
Appropriately selecting the factors and their weight values is another interesting problem.
More discussions can be found in [36, 47]. We focus mainly on the novel query type in this
paper.

The proposed query is challenging due to the following reasons. First, the query searches
an optimal location in the entire search space. There are no candidate locations available
for the query. Second, the computational complexity of the query grows exponentially with
larger input data sets. The cost of examining all object combinations would be considerably
high. Third, various indexing methods have been proposed for the evaluation process of
spatial queries. For example, Voronoi-Quad-tree (or VQ-tree in short) was developed to
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improve the response time of k Nearest Neighbor (kKNN) query, reverse kNN query, and
closest pair query on road networks [10]. However, MOLQ allows users to specify the input
object weights and type weights as preferences, which might be greatly varied in queries.
Therefore, if Voronoi diagrams are used, they have to be dynamically generated according
to object locations and such varying weights. Building any indices on the Voronoi diagrams
at run-time would be expensive for query processing.

Therefore, motivated by properties of Voronoi diagrams, we propose an Overlapped
Voronoi Diagram (OVD) model, which integrates location information and object weights
w? of spatial objects by overlapping the Voronoi diagrams generated from the objects.
With the OVD model, the closest objects of different types to a particular location can be
efficiently retrieved without checking all combinations of objects.

To efficiently answer the query in Euclidean space, we design two solutions based on
the OVD model in two steps. First, the proposed solutions generate an OVD from input
objects. Due to the difference in dominance regions of objects, a Real Region as Boundary
(RRB) solution calculates the real overlapping region of two Overlapping Voronoi Regions
(OVRs); while a Minimum Bounding Rectangle as Boundary (MBRB) solution approxi-
mates the overlapping region by using Minimum Bounding Rectangles (MBRs) for avoiding
high cost of OVR overlapping computation. Then, by utilizing Fermat-Weber techniques,
our solutions iterate all potential OVRs, and produce the global optimal location as the result
of the query. Additionally, due to a surprisingly large number of OVRs output by RRB or
MBRB methods, we propose a cost-bound iterative algorithm (Algorithm 5) that is able to
significantly reduce the computational complexity of the original iterative method [48] (See
Section 8.1.2).

Moreover, the object location or weights may vary over time in applications. The quality
of programs in a school may be re-evaluated every year. More positive or negative reviews
to a supermarket may be continuously posted. If there are changes in a limited number
of objects, re-evaluating MOLQs over updated object sets by using either RRB or MBRB
would be considerably expensive due to high cost of Voronoi diagram overlapping oper-
ations. Therefore, we propose a new problem, which focuses primarily on updating the
result of MOLAQ if locations, object weights, or type weights of objects are changed. After
providing a formal definition of the MOLQ updating problem, we demonstrate a baseline
approach, which incrementally updates Voronoi diagrams of input object sets that contain
updated objects and generates a new MOVD by overlapping the Voronoi diagrams. To avoid
re-computing MOVDs, we propose an MOVD updating model, in which the object insertion
and deletion operations are defined to incrementally update MOVDs. Based on the updating
model, we propose an advanced MOVD-based incremental updating approach, which only
updates the Overlapping Voronoi Regions (OVRs) inside the dominance regions of updated
objects and the neighbor OVRs of the objects. We further analyze the object updating
algorithms over ordinary MOVDs (which are generated from ordinary Voronoi diagrams).

The contributions of this study are summarized below:

1.  We formulate a novel Multi-criteria Optimal Location Query (MOLQ) that is able to
find optimal locations comprehensively by considering multiple criteria.

2. We build an OVD model, and analyze its properties and overlap operations systemati-
cally.

3. After introducing a Sequential Scan Combinations (SSC) solution as a baseline, we
propose a Real Region as Boundary (RRB) solution and a Minimum Bounding Rect-
angle as Boundary (MBRB) solution based on the OVD model. RRB and MBRB can
efficiently evaluate the novel query type in Euclidean space.
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Fig.2 The structure of this paper

4. We identify a novel Multi-criteria Optimal Location Query (MOLQ) updating problem.

5. We build an MOVD updating model, and propose an MOVD-based incremental updat-
ing approach to efficiently address the MOLQ updating problem. We analyze the
computational complexity of our proposed object updating algorithms over ordinary
MOVDs. The computational complexity of object insertion operation over an MOVD
is bounded by 3 x I, where I denotes the average number of OVRs in the Voronoi
dominance region of the new object. In the worst case, the computational cost becomes
O (n?), where n indicates the number of objects in each object type.

6. We evaluate the performance of the proposed solutions through extensive experiments
with real-world data sets.

The rest of this paper is organized as follows. Section 2 surveys related works. The pro-
posed query and relevant mathematical tools utilized in our solutions are formally defined
in Section 3. As Fig. 2 displays, the OVD/MOVD model is detailed in Section 5. After pre-
senting a baseline solution for MOLQ query, we illustrate two MOVD-based solutions in
Section 6. We create an MOVD updating model and propose a MOVD incremental updat-
ing solution for the MOLQ updating problem in Section 7. The experimental validation of
our designs is presented in Section 8. We conclude the paper in Section 9.

2 Related work

In this section, we review works related to reverse nearest neighbor queries, optimal location
queries, and incremental methods for Voronoi diagrams.

2.1 Reverse nearest neighbor query

Korn and Muthukrishnan [29] proposed the influence set notion based on reverse near-
est neighbor (RNN) queries. They presented a precomputation-based approach for solving
RNN queries and an R-tree based method (RNN-tree) for large data sets. In order to decrease
index maintenance costs in [29], Yang and Lin [51] presented the Rdnn-tree which combines
the R-tree with the RNN-tree and leads to significant savings in dynamically maintaining the
index structure. The solutions in [29, 51] can be employed to evaluate both the monochro-
matic RNN query and the bichromatic RNN query; however, these precomputation-based
techniques incur extra maintenance costs for data updates. Therefore, several solutions
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without precomputation were proposed. For discovering influence sets in dynamic environ-
ments, Stanoi et al. [39] presented techniques to process bichromatic RNN queries without
precomputation. The design is to dynamically construct the influence region of a given
query point g where the influence region is defined as a polygon in space which encloses
all RNNs of ¢. For the monochromatic RNN query, Tao et al. [41] developed algorithms
for evaluating RKNN with arbitrary values of k on dynamic multidimensional data sets
by utilizing a data-partitioning index. The algorithms were later extended to support con-
tinuous RKNN searches [42], which return the RkNN results for every point on a line
segment.

There are some other works related to RNN query evaluation. Retrieving RNN aggrega-
tions (such as COUNT or MAX DISTANCE) over data streams was introduced in [30]. Yiu
et al. [53] proposed pruning-based methods to find RNNs in large graphs. The algorithms
for efficient RNN search in generic metric spaces were presented in [43]. The techniques
require no detailed representations of objects and can be applied as long as the similarity
between two objects can be computed and the similarity metric satisfies the triangle inequal-
ity. Cheema et al. [6] studied the problem of continuous monitoring of reverse k nearest
neighbor queries in Euclidean space as well as in spatial networks. Parisa et al. [19] investi-
gated a novel Continuous Maximal Reverse Nearest Neighbor (CMaxRNN) query on spatial
networks. The query assumes that objects would frequently change their locations. Instead
of calculating the optimal network location by time, their method incrementally updates
the MaxRNN query results on spatial networks. Choudhury et al. [8] studied a bichromatic
reverse k nearest neighbor queries on spatial-textual datasets. The query returns an opti-
mal location and a set of keywords, which maximize the size of bichromatic reverse spatial
texture k nearest neighbors (MaxBRSTANN). While the aforementioned approaches work
well for R(k)NN queries, they cannot be utilized to evaluate the unique query type stud-
ied in this paper for the following reasons. First, R(k)NN queries find objects from a given
object set; while no optimal location candidates are given in MOLQ queries. Second, RNN
queries only consider two types of objects; but MOLQ queries may take more than two
types of objects into account. Third, the distance between objects in two types is used in
object selection in R(k)NN queries; but MOLQ queries evaluate the total sum of distance
between a location and many objects.

2.2 Optimal location query

One group of optimal location queries (OLQ) is defined with an optimization function
which maximizes the influence of a facility. Given a set of sites, a set of weighted objects,
and a spatial region Q, the optimal-location query defined in [14] returns a location in Q
with a maximum influence based on the L; distance, where the influence of a location is
the total weight of its RNNs. Xia et al. [49] proposed pruning techniques based on a met-
ric named min Exist DN N to retrieve the top-f most influential sites according to the total
weights of their RNNs inside a given spatial region Q. The Optimal Location Selection
(OLS) search was introduced in [18], which retrieves target objects in a target object set
Dp that are outside a spatial region R but have maximal optimality with a given data object
set D4 and a critical distance d.. Here, The optimality of a target object b € Dp located
outside R is defined as the number of the data objects from D4 that are inside R and have
distances to b not exceeding d,.

Another group of location optimization queries is defined with a different optimization
function which minimizes the average distance between a client and the nearest facil-
ity. Zhang et al. [54] proposed the Min-Dist Optimal Location Query (MDOLQ). Given
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a set S of sites, a set O of weighted objects, and a spatial region O, MDOLQ returns a
location for building a new site in @, which minimizes the average distance from each
object to its closest site according to the L distance. They provide a progressive algorithm
that quickly suggests a location, tell the maximum error the outcome may have, and con-
tinuously refine the result. When the algorithm finishes, the exact answer can be found.
Because user movements are usually confined to underlying spatial networks in practice,
Xiao et al. [50] extended OLQ to support queries on road networks. They designed a uni-
fied framework that addresses three variants of optimal location queries. By observing that
users can only choose from some candidate locations to build a new facility in many real
applications, Qi et al. [37] introduced the Min-dist Location Selection Query (MLSQ) based
on the studies in [50, 54]. Given a set of clients and a set of existing facilities, MLSQ finds
a location from a given set of potential locations for establishing a new facility where the
average distance between a client and her nearest facility is minimized. MND, a method
for efficiently solving MLSQ, employs a single value to describe a region that encloses the
nearest existing facilities of a group of clients. MND can achieve close performance to the
fastest common methods without extra indices. Chen et al. [7] re-visited the optimal location
query problem based on road networks. They introduced a novel idea of nearest location
component in their method, and applied it to three types of problems, namely the optimal
multiple-location query problem, the optimal location query on 3D road networks, and the
optimal location query problem with another objective. Yao et al. [52] proposed a unified
framework to address three variants of optimal location queries. Moreover, the framework
was extended to support the incremental monitoring of the query results when the loca-
tions of facilities and clients have been changed. Liu et al. [31] investigated the optimal
location queries for finding more than one new server or facilities. And they also devel-
oped an approximation algorithm for the cases when a large number of new servers needed
to set up. However, these studies differ from the proposed query type in definition and
optimization functions. Consequently, we cannot use them for answering our novel query

type.

2.3 Incremental methods for Voronoi diagram

A natural way to construct a Voronoi diagram is to incrementally insert objects to the
Voronoi diagram [21]. The object insertion operation of Voronoi diagram is a process that
finds a new Voronoi cell enclosing the new point. The process often consists of walking
through the neighbors of the new point and splitting Voronoi cells of the neighbors. Ohya et
al. studied the order of object insertions and developed an improved incremental construc-
tion method that finds an optimal insertion order in a pre-processing stage [34]. Sugihara
and Iri focused on the topological structure of objects rather than their numerical values, and
proposed a method for generating Voronoi diagrams from millions of objects [40]. Guibas
and Stolfi proposed a Voronoi diagram construction method and an object insertion method
by using the Voronoi dual and Delaunay triangulation. The computational complexity of the
two methods are O(nlogn) and O (n) in average cases [22]. Guibas et al. developed a ran-
domized incremental construction algorithm, which randomizes the insertion sequence of
objects [23]. The computational complexity of their method is bounded by O (nlogn) for
any collection of objects regardless of their distribution. The incremental construction algo-
rithms have been applied to many applications [1, 17, 20, 24]. Object deletion operation of
Voronoi diagram is largely the reverse of the object insertion process with specific difficul-
ties. Devillers presented that Heller’s algorithm is false, and proposed an efficient algorithm
with cost O(nlogn) for vertex deletion operation in a planar Delaunay triangulation by
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Table 1 Symbolic notations

Symbol Meaning

P; An object set of a particular type

G An object group

P} A spatial object in P;

w', w° Type weight and object weight

¢l ¢° A type weight function and an object weight function
|S| The number of elements in the set S

€ An error bound

n A distance bound

y A stopping rule used in iterative approaches

dE(,) Euclidean distance between two objects

dav () The distance between two objects on the road

E A family of object sets or groups

R The search space

VD(P;) Voronoi diagram of P;

Dom(p;) Dominance region of p; in a Voronoi diagram

ovVD An overlapped Voronoi diagram

OVR An overlapped Voronoi region

MOVD A minimum overlapped Voronoi diagram

S A subdivision of a search space

V,E,F A Set of vertices, edges and faces in a subdivision
w A set of boundary points in a subdivision

B, 5 Object insertion and deletion operators over a family of object sets
+, = Object insertion and deletion operators over MOVDs
52 MOVD overlapping operator

utilizing ear elimination, where n indicates the degree of the deleted vertex [11]. Mostafavi
et al. improved the method by considering the empty circumcircle property of the Delaunay
triangulation [32]. They found that any triangle removed by the method must be empty of
vertices except the deleted point. Dinis and Mamede utilized the sweep line technique in his
Voronoi diagram updating algorithms, in which an object can be added or deleted in linear
time [12].

3 Preliminaries

A spatial object is defined by the triple < I, w’, w® >, where [ is its location in the search
space, and w' and w? are the type weight and object weight associated with the object.
Without loss of generality, w’ and w® are positive numbers. Smaller values indicate higher
preference. E = {Py, ..., P,} denotes a family of object sets, where P; = { pl.l, s p;”}
denotes a set of objects of a particular type. G = {p{, ..., p,}, where p{ € Py, ..., p; € Py,
denotes an object group, in which the objects are in different types. ¢’ and ¢ are monotonic
weight functions applied to type weight and object weight. Notations used in this paper are
summarized in Table 1.
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Fig.3 An example of ordinary
Voronoi Diagrams

3.1 Voronoi diagram
3.1.1 Ordinary Voronoi diagram

Given a set of objects P; = { pil, ..., p"}, the ordinary Voronoi diagram V DO (P;) is defined
as a collection of dominance regions {Dom 9 ( pi) | pi € P;}, each of which is dominated
by an object p. All locations in Dom?( pj') are closer to p{ than other objects. d EC,)
denotes the distance between two points in Euclidean space.

Dom®(py = (11dE(, pt1) < dE(, p}.D),u # v, pt, p! € P;} (1

Figure 3 shows an example of ordinary Voronoi diagrams, which is generated by eight
objects (generators) in Euclidean space. The dominance region of p; is highlighted by the
shaded polygon. By the properties of Voronoi diagrams, p; is closer to any object in the
shaded polygon than other generators (e.g., p2).

An incremental updating method for Voronoi diagrams was proposed to avoid high cost
of Voronoi diagram re-generation if only a small number of objects are added to or removed
from the initial object set [21]. Figure 4 shows an example of inserting a new generator into
an ordinary Voronoi diagram. An object p’ in the dominance region of p; (Dom(py)) is
added to the object set P. We observe that the bisector line of p; and p’ intersects with the
boundary of Dom(p1) at two points b1 and b4. The bisector line decomposes Dom (p1) into
two sub-regions, which will become Dom(p1) and a part of Dom(p’) in the new Voronoi
diagram. In addition, if the bisector line is extended at one end, say b1, the line will go into
Dom(pg). Then, the bisector line of p’ and pe can be created to specify the boundary of
Dom(pg) and Dom(p’) in the new Voronoi diagram. The process continues until Dom (p’)
is produced. Any boundary inside Dom(p’) is removed in the process. The details of the

Fig.4 An example of object
insertion over a Voronoi diagram
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deletion method can be found in [35]. The computational complexity of the insertion and
deletion operations over Voronoi diagrams is linear to the number of neighbor Voronoi cells
of inserted/deleted objects in average cases. The insertion and deletion methods can also be
easily applied to weighted Voronoi diagrams.

3.1.2 Weighted Voronoi diagram

In a weighted Voronoi diagram, generators have different weights reflecting their variable
properties. Given a set of objects P; = { pil, ..., pi*} and a weight function ¢, the domi-
nance regions are measured by weighted distance. The generation methods for ordinary or
weighted Voronoi diagrams can be found in [2, 35].

vDY(P) = {(Dom"(p")|p’ e P;} where
Dom™ (p)y = {11 ¢(d(l, pt.D), pw’) <c(d(l, pl.l), p’w’),u#v, p*, p!e P}
2

3.2 Fermat-Weber point

Given a point group G = {p{, ..., p;} in a d-dimensional space R, the Fermat-Weber point
is the point ¢ which minimizes the following cost function [5]:

c(qg,G)= Y, pf.wf x d(q, pi.l) 3)
p;eG

The point exists for any point set and is unique except in the event that all the points lie
on a single line [25]. In the non-collinear case, the cost function is strictly convex [45].

The solution to the three-point Fermat-Weber problem has been proposed in [27]. In the
collinear case of any point set, an optimal point can be found in linear time [5]; however,
to the best of our knowledge, if the number of points is greater than three, no exact solu-
tion has been reported for non-collinear cases. Instead, an iterative approach is used as an
approximate solution proposed in [45, 48]. This approach converges monotonically to the
unique optimal location during iterations.

The iterative approach starts with an arbitrary location g (g0 ¢ G) in R?. In each
iteration, a new location ¢; = f(gi—1, G) is produced based on a location g;_; found
before the iteration. According to the monotonic convergence property, g; is closer to
the Fermat-Weber point than ¢;_1; hence, theoretically, the Fermat-Weber point is located
at lim,, f"(qo, G), which indicates a location obtained after infinite iterations. The
function f is described below.

s S(q) x pil}yif G
£(g.G) = 2 peclsi@ x piltifq ¢ C @
q Otherwise
where
-1
s _ _plw p;‘;.w’
8@ = g prn < )3 d(q.p 1) )

p?,/eG

i

Three stopping rules for the iterative method are widely adopted. Uster and Love devel-
oped a generalized bounding method, by which the result is limited within a specified
rectangular distance to the optimal location [44]. Verkhovsky and Polyakov adopted the
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difference of the costs between two successive iterations as the stopping rule in their exper-
iments [46]. Setting an acceptable deviation from the cost of the optimal location as the
stopping rule is widely used in applications [38]. For example, given an error bound €, the
location after the n'" iteration I”, and the optimal location [®°, the iteration procedure will
stop when

c(l",G)—c(I*°,G)
s <€ ©®
is satisfied, where ¢(I*°, G) is approximated by a lower bound of the cost at [":
I o o 1= pl L xellv—pf L]
Ib(l") = Z IT}VIH Z p;-w dam, p* ) N
k=1 pieG '

4 Problem definition
4.1 Definition of multi-criteria optimal location query (MOLQ)
4.1.1 Weighted distance of two points

Given a point ¢, a spatial object p, a type weight function ¢’, and an object weight function
¢?, weighted distance considers the distance between two points d(., .) and the weights of
p. The formal definition is as follows:

WD(q, p,s", ¢ =¢"(c°(d(q, pl), pw’), pw") ®)

Here, d(.) is the distance between two locations in Euclidean spaces.
4.1.2 Weighted distance from a query point to an object group

Given a point ¢, an object group G = {p{, ..., py}, a type weight function ¢’, and object
weight functions o = {¢7, ..., ¢/}, we define the weighted distance from ¢ to G as the sum
of WD(q, p;, ¢!, ¢?), where pi € G, ¢ € o. The formal definition is

WGD(‘L Ga §ts(7) = Z WD(q;pfa §t7 §10) (9)
pieG,¢leo

4.1.3 Minimum weighted distance from a query point to object groups

Given a point g, a family of object sets E = {Py, ..., P,}, a type weight function ¢’, and
object weight functions o = {¢7, ..., ¢;}, we define the minimum weighted distance from
q to object combinations of E as:

MWGD(q,E,¢',0) =min({WGD(q, G,¢",0) |G € P| X ... x P,}) (10)
4.1.4 Multi-criteria optimal location query (MOLQ)

Given a family of object sets E = {Py, ..., P,}, a type weight function ¢’, and object
weight functions o = {7, ..., ¢/} where ¢/ is applied to an object p; € P;, the pur-
pose of the query is to find an optimal location / in the search space R that minimizes
MWGD(,E, ¢', o). There is no candidate location provided for the query.

MOLQE, ¢',0) =1, wherel satisfies the condition

MWGD(,E, ¢',0) = min{MWGD(',E, ¢', o) | I e R}) an
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In the example of MOLQ shown in Fig. 1, the query receives three object sets E =
{Pschool> Psupermarket» PGasstation}- Multiplicatively-based functions are used as type and
object weight functions. The weighted distance between a location g and an object p can be
calculated as WD(q, p, ¢', ¢°) =d(gq, p.l) x p.w® x p.w'. An object group is an object
set containing a school, a supermarket, and a gas station. Equation 9 represents the weighted
distance from a location ¢ to all objects in an object group. Equation 10 finds an optimal
object group from { P x ... x P, }, which minimizes the weighted distance from ¢ to an object
group. MOLQ (11) aims to find an optimal location and an object group, which minimize
the weighted distance from the location to all objects in the object group. In the example,
Community 3 is the best location in the search space, because the distance from Community
3 to the object group G = {School 2, Supermarket 2, Gas Station 2} is shorter than the
distance from any other location to any object group.

4.2 Definition of multi-criteria optimal location query updating problem

To define MOLQ updating problem, we first introduce object insertion and deletion opera-
tions over object sets as two types of object updating operations over a family of object sets.
Then, given a family of object sets, E = {Py, ..., P,}, the query result MOLQ(E, ¢', o),
and a set of changes on E, the MOLQ updating problem can be defined as a process that
finds the result of MOLQ after the changes have been applied to E. The changes on E are
abstracted by a set of object insertion or deletion operations on [E. Any updates on a partic-
ular object (e.g., the changes in its location, type weight, or object weight) are equivalent to
deleting the object from E and then adding it back with new attributes.

4.2.1 Object updating to a family of object sets

Object insertion operation Given a family of object sets E = { Py, ..., P,} and an object ¢
(# P, € E, g € P;), we assume there exists an object set P; € E, in which the objects are in
the same type with g. Then we define the process of inserting g to E as follows:

E' =EB{q}={P1,... PjU{q}, ..., Py} 12)

If P; does not exist, then ¢ is the only object in its type. This is a case of MOLQ
overlapping, in which the MOLQ of {q} is overlapped with the MOLQ of E.

If an object set Q ={q1, ..., qx} is given to insert into E, the insertion process is equivalent
to sequentially inserting each object in Q to E. Note that there must exist one and only
one object set in [E, which contains objects in the same type with the newly inserted object.
Objects in Q can be in different types. We define the process that inserts an object set Q to
IE as follows (H is left associative):

E=EBQ=EB{q:)B..0{q (13)

Object deletion operation The object deletion is an inverse operation of the object inser-
tion H. Given a family of object sets E = {Py, ..., P,} and an object pl’.< € P;, the object
deletion operation that removes pl’? from E is defined as follows:

E =EB{pl} = (P, ... P\ (P}, s Pu) (14)
Deleting a set of objects O = {q1, ..., q«} from E can be completed by removing each

object in Q from E. Every objects in Q must be contained by an object set in [E. Objects in

@ Springer



116 Geoinformatica (2019) 23:105-161

Q can be in different types. The formal definition of deleting Q from E can be presented as
(H is left associative):

E=EBQ=EB{¢}3..8{g%) (15)
4.2.2 Multi-criteria optimal location query updating problem

We assume that the MOLQ has been addressed over a family of object sets. Each object
is assigned with an object weight and a type weight. However, for any reasons, there are
changes applied to a small number of objects, and the MOLAQ is required to be re-evaluated
over the updated object sets. Thus, the multi-criteria optimal location query updating prob-
lem can be defined as follows: given a set of object sets E = {Py, ..., P,}, a type weight
function ¢’, and object weight functions o = {¢{, ..., 7}, where ¢7 is applied to an object
pi € Pletl = MOLQ(E, ¢!, o) be the answer to the MOLQ query, Q be a set of objects
updated to [E, then the multi-criteria optimal location query updating problem is to find an
optimal location /’, which minimizes the total weighted distance from !’ to one object in
each type after updating Q to E.
If Q is inserted into [E, then

MOLQ@E B Q, ¢', o) =1', iflsatisfies the condition

MinD¥ (', E B Q, ¢', o) =min(MinDJ! (", EB Q, ¢', o) |I" € R}) (16)
If Q is deleted from E, then
MOLQ®E B Q, ¢', o) =1', ifl satisfies the condition a7

MinDY (', E B Q, ¢', 0) = min((MinD¥ (1", E B Q, ¢', o) |I” € R})

It is worth noting that any change on an object is equivalent to deleting the object from E
and adding it back with new attributes. The object insertion operation only applies to Q if,
Vg; € Q, there must exist an object set P; € [E, which contains objects in the same type of
gi. The object deletion operation only applies to Q if every object in Q must be in an object
set of [E. The query result over updated object sets could be / or a better location.

5 OVD and MOVD models

Before describing our MOVD-based solutions, we will first introduce the OVD and
MOVD models. In this section, we start with a simple OVD example which provides a
basic understanding of the model. Then, we formally define OVD and Minimum OVD
(MOVD) and systematically analyze their properties, which not only highlight the differ-
ence from and relationship with Voronoi diagrams, but also provide correctness analyses of
our MOVD-based solutions. More OVD/MOVD properties will be provided in Appendix
A.1-A.3.

We use the OVD model in Euclidean space as an example for better illustration in this
paper; however, the model can be easily extended to road networks or other search spaces.

5.1 An OVD example
Figure 5a and b display two ordinary Voronoi diagrams generated by schools and super-
markets, respectively. The shaded areas in the figures are dominance regions of generators

p3 and g;. Figure 5c shows an OVD that overlaps the two ordinary Voronoi diagrams.
Apparently, the OVD is comprised of a number of overlapped regions, each of which is
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(a) Schools (b) Supermarkets (¢) An OVD

Fig.5 Ordinary Voronoi diagrams and OVDs in Euclidean space

generated by overlapping two ordinary Voronoi polygons. For example, the doubly shaded
area in Fig. 5c is the overlapped region in both shaded regions of two ordinary Voronoi dia-
grams. According to the properties of Voronoi diagrams, p3 and g are the closest school
and supermarket to any locations in the doubly shaded region.

As an introductory example, all schools and supermarkets are assumed to be of equal
weight in Fig. 5. An example of assigning different weights to objects in an OVD will be
presented in Fig. 8 in Section 6.

5.2 Overlapped Voronoi diagram definition
5.2.1 Overlapped Voronoi diagram (OVD)

Given a family of object sets E = {Py,..., P,} and a set of Voronoi diagrams V =
{VD(P;) | P € E}, where V D(P;) can be either an ordinary or a weighted Voronoi dia-
gram generated by P; in the search space R, Overlapped Voronoi Diagram (OVD) is a set
of Overlapped Voronoi Regions (OVR),

OVDE)={OVR; |1 <)<t} (18)
where OV R; is
OVR(p{,...p;) =1{l|l € Dom(p}), ..., | € Dom(p}), p{ € Py, ....p;, € P} (19)

Take Fig. 5c for example, MOV D{P, Q}) = {OVR(p1,4q1), ..., OVR(ps, q1), -

OVR(p1,45)s --» OVR(ps, g5)}-
InEq. 18, =[] P.cE | P;|, which denotes the number of OVRs in OV D(E). This will
be further discussed in Theorem 7.

Property 1 An OVD may have one or more empty set OVRs (e.g., OVR; = {).
By definition, an OV R is the intersection of dominance regions from different Voronoi
diagrams. These dominance regions may not overlap each other (see the dominance regions

of p; in Fig. 5a and g5 in Fig. 5b). If this is the case, no location falls into both dominance
regions, thus their overlapping region is an empty set.
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5.2.2 Minimum OVD (MOVD)

A Minimum Overlapped Voronoi Diagram (MOVD) is an OVD in which all empty OVRs
have been removed. An OVD is an MOVD fif it does not have any empty OVRs. The formal
definition of MOVD is:

MOVD(E) =OVDE)\{OVR; € OVD(E) | OVR; = ¢} (20)

In the extreme case that E is an empty set, no Voronoi diagrams overlap, and the search
space is not decomposed into subregions. We define this case as:

MOVD@) =0VD@®) = (R} (21)

6 MOVD-based algorithms in Euclidean space

After introducing the OVD model, we now propose our MOVD-based algorithms for the
query in Euclidean space in this section. In particular, we first present a sequential scan
combination algorithm as a baseline solution. Then, we illustrate the framework of our
MOVD-based solutions in Section 6.2. Two algorithms for OVD overlapping operations,
RRB and MBRB, are presented in Sections 6.3 and 6.4, respectively. Finally, we describe
a cost-bound approach to optimize the cost of solving a large number of Fermat-Weber
problems. In this research we mainly focus on applying the properties of OVD and MOVD
models to answer the proposed novel query type. The proposed algorithms primarily rely
on main memory for data storage.

6.1 Sequential scan combinations algorithm

One basic algorithm to solve MOLQ is to sequentially check optimal locations of all
object combinations. Given E = {Py, ..., P,}, the optimal locations I’s of all combina-
tions {p{, ..., p,}, where p{ € P, .., p; € P,, in Euclidean space can be calculated by
a Fermat-Weber method. The answer to the query is the best location among these I’s.
We call this algorithm the Sequential Scan Combinations (SSC) algorithm. The computa-
tional complexity of SSC is O(u x [] P.cE | P;|), where w denotes the cost of finding the
optimal location with a given object combination. The detailed steps of SSC are shown in
Algorithm 1.

Algorithm 1 SSC(E, ¢’, o)

1: Ubound = o0

2:1=<0,0>

3: for < pY,pj...p, >€ Py x ... X P, do
4: Calculate the optimal location /; of < p{, ..., p; >
5: Cost =WGD(l1, {p}, ... pi}. ¢", 0)
6: if Cost < Ubound then

7: Ubound = Cost

8: =1

9: end if

10: end for

11: return /
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In Euclidean space, since the computation of SSC is expensive, we can set an upper
bound to reduce the complexity of the algorithm by filtering out a portion of combina-
tions whose optimal locations cannot be the answer. For example, two combinations (object
groups), G| and G, will be evaluated sequentially in SSC. We assume the optimal loca-
tion of G is at /1. The weighted distance from /1 to G is denoted by d;. Before processing
Gy =< p‘l’, p%..., p, >, we first set d; as an upper bound and calculate the optimal location
Iy of < p{, p5 >, which costs much less than computing an optimal location of multiple
points. If the weighted distance from /; to < p’f, pj > is greater than dj, the weighted
distance from any location to G, must be greater than d;. Thus, calculating the optimal
location of G can be avoided. During SSC processing, the upper bound is initialized to
infinity and will be reduced to the total weighted distance of the best solution found so
far.

6.2 Framework of the MOVD-based solutions in Euclidean space

Figure 6 illustrates the framework of our solutions in Euclidean space. The inputs of the
solution are Point of Interest (POI) data sets (P; € E), object weight functions ¢ =
{¢7, .., v}, and a type weight function ¢!. The result is an optimal location of the query in
the search space.

In the evaluation system, the query is sequentially processed by three modules.
In particular, based on POIs of particular types and the object weight functions, VD
Generator generates Voronoi diagrams that are the basic MOVDs used in the next
step (see Theorem 10). Then, a new MOVD is produced by overlapping the basic
MOVDs with MOVD Overlapper (see Eq. 44). A significant number of impossible
object combinations are filtered out, which reduces the computation cost in the next
step. Finally, Optimizer sequentially scans OVRs in the new MOVD, finding a locally
optimal location in each OVR, and returns the best of these locations as the query
result.

Essentially, two solutions are proposed in Fig. 6, illustrated by two paths from the VD
Generator to the Optimizer. The solutions apply either Real Region as Boundary (RRB) or
Minimum Bounding Rectangle as Boundary (MBRB) approaches in the MOVD Overlapper.
The RRB approach provides real boundaries of OVRs in the new MOVD by calculating the
overlapping regions, which is expensive if the regions are complex. The MBRB approach

POI Data Sets LVDG . ‘
. enerator
{Pll seey Pn}
{VD(P4),..., VD(Pn)}
Object Weight } 7777777777 RN : T
Functions | 2. MOVD Overlapper \ }
I
g=1{¢,..,C% v I
Gl } RRB MBRB \
I | (Algorithms 2 & 3) | | (Algorithms 2 & 4) }
Type Weight | N o |
Function -~ MOVD ({Py,..., Po})
S 3. Optimizer (Algorithm 5 }—» An Optimal
P (Alg ) Location
Query Inputs Evaluation System Result

Fig.6 Framework of the MOVD-based solution in Euclidean space. The paths of RRB and MBRB solutions
are indicated by solid and dashed arrows, respectively
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can avoid the real region calculation, but it produces false positives that would incur unnec-
essary calculation while overlapping the next MOVD. Which approach performs better
depends on the number and the complexity of MOVDs generated by the VD Generator. The
two MOVD overlapping approaches will be described in the following two subsections. A
cost-bound approach that can reduce the complexity of finding locally optimal locations
in Optimizer will be presented in Section 6.5. The Voronoi diagram generation approaches
used in the VD Generator can be found in [2, 16].

6.3 RRB approach

In this subsection, we describe the RRB approach for MOVD overlapping operations. Since
basic MOVDs are identical to Voronoi diagrams (see Theorem 10), the generation methods
of which have been extensively studied, we will mainly focus on the process of creating
an MOVD from two MOVDs. Moreover, MOVDs or Voronoi diagrams are special types of
maps or subdivisions. A method that computes the overlay of two subdivisions is presented
in [9, 15]. However, the method primarily focuses on the subdivisions that consist of line
segments. Extending the method to overlap arbitrary subdivisions is non-trivial. Therefore,
the RRB approach is proposed as a general design of MOVD overlapping operation. For a
better explanation, the overlapping of two basic MOVDs is illustrated by the simple example
in Fig. 7.

A plane-sweep-based algorithm is designed in the RRB approach. As the typical plane
sweep approach [2, 16], the RRB approach maintains an event queue and two sweeping
statuses. The event queue consists of a number of event points that are the maximum and
minimum values of projections of OVRs on the y axis. These maximum and minimum
points are called start and end points, which indicate that when the sweeping line arrives at
these points, the corresponding OVR starts or ends its intersection with the sweeping line.
The event points of both MOVDs are sorted by their y-coordinates in descending order. The
sweeping line vertically scans the plane from top to bottom, so that the start point of an
OVR will be reached before its end point. The status structures are set up to record OVRs
that intersect with the sweeping line. Two status structures are maintained individually and
respectively for MOVDs. To efficiently detect if OVRs in the two status structures are over-
lapped, we also calculate the range (minimum and maximum values) of projections of OVRs

A\

Status —H 11 Status |- {H

Fig.7 Overlapping two MOVDs in Euclidean space
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on the x axis. The event points and the projection on the x axis are pre-determined before
the overlap calculation.

During the sweeping process, when an end point is arrived at, the corresponding OVR
is removed from the status structure. When the sweeping line reaches a start point, the
corresponding OVR is inserted into the status structure. Moreover, overlapping regions of
the new OVR and OVRs in the other status structures are required to be detected. The
detection process first identifies potential OVRs, the range of which overlaps with the new
OVR on the x axis. Then, the overlapped region of the two OVRs is calculated. The details
are described in Algorithms 2 and 3.

The essential idea of the algorithms is that the minimum and maximum values on the
x and y axes are an outer boundary of OVR. Two OVRs cannot overlap each other if the
area inside their outer boundaries does not overlap. Overlapped outer boundary detection
significantly reduces overlapping region calculation by avoiding the overlapping of two
OVRs (e.g., regions of p; and g5 in Fig. 7), which are actually far away from each other.

As shown in Algorithm 2, the overlap operation receives two MOVDs as input param-
eters and produces a new MOVD. From lines 1-2, Result, Event Queue, Status, and
Status’ are initialized to be empty sets. Status keeps the status for MOV D(E), and
Status’ for MOV D(E’). Then, in lines 3-4, events are inserted into Event Queue and
sorted. Finally, from lines 5-12, all events are iteratively handled by Algorithm 3.

Algorithm 2 Overlap(M OV D(E), MOV D(E"))

. Result = J, Event Queue =
. Status = &, Status’ = &
: Push events of MOV D(E) and MOV D(E’) into Event Queue
Sort(Event Queue)
: while ( Event Queue # ) do
e = Event Queue.pop()
if (e is from MOV D(E) ) then
EventHandler(e, Status, Status’, Result)
else
EventHandler(e, Status’, Status, Result)
end if
: end while
: return Result

YRR

—_ e
W N = O

Algorithm 3 describes the event handler that receives the following four parameters. e is an
event object. Current is the status structure of MOVD from which the event occurs. Other
refers to the other status structure. Result is the MOVD produced by the overlap operation.
As shown in Fig. 9, an MOVD manages a list of OVRs, each of which is represented as
<region, pois >, where region maintains the shape of the OVR and pois is a list of
objects associated with the OVR. If a start event occurs, the corresponding OVR is first
inserted into the Current status. Then, potentially overlapped OVRs in Other are detected
by comparing their Rangex with the current OVR. Rangex denotes the range of possible
x-coordinates of OVRs. If their Rangex overlap, the overlapped region is calculated in
line 5. If the newly generated overlapped region is not empty, a pair of the region and its
associated pois will be appended to Result. In the second branch, an end event takes place
(in line 13) and the corresponding OVR is removed from Current.
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Algorithm 3 EventHandler(e, Current, Other, Result)

1: if e is a start event then

2 Insert e.ovr into Current

3 for ovr € Other do

4 if Rangex(e.ovr) n Rangex(ovr) # & then
5: region = e.ovr.region N ovr.region

6 if region # ¢ then

7 pois = e.ovr.pois U ovr.pois

8 Result.append(< region, pois >)

9: end if

10: end if

11: end for

12: else

13: Remove e.ovr from Current /* e is an end event */
14: end if

15: return

It is worth noting that a general overlapping approach is not presented; however, the RRB
approach can be modified to be a general approach used for the OVD model if line 7 is
removed and only region is appended to Result in line 8. pois contains the additional
information for our specific query type. Algorithm 3 does not specify any methods for over-
lapping region calculation in line 5. The reason is that the shape of OVRs in a general model
is difficult to predict. The case is worse after overlapping because the OVRs become more
complex. Furthermore, overlap methods for regions vary greatly as well. The overlap meth-
ods for polygons are different from the ones for circles (Voronoi cells could be circles in
multiplicatively Voronoi diagrams, see Fig. 8b). The overlap methods applied in the model
cannot be determined until the shapes of regions have been decided. We will discuss this
issue in Section 6.4.

The RRB approach is an output-sensitive algorithm, the complexity of which depends
on the size of the results, or more exactly the number of OVRs existing in the new MOVD.
We use the average size of MOVDs in the analysis instead of the number of objects, the
number of object types, or the complexity of Voronoi diagrams, because (1) the inputs of the
RRB approach are two MOVDs; (2) the complexity of MOVDs depends on both the number
of Voronoi diagrams overlapped and the complexity of the Voronoi diagrams; (3) Voronoi
diagrams may vary greatly due to the variety of sizes of input data sets and the ways of
measuring distance. Thus, the computational complexity of operation & in the worst case is

4n x 1g(4n) +2 x 2n x 1g(2n) + 0 x n*> = O(n?) (22)

where 6 denotes the cost of region overlapping computation and » indicates the number of
OVRs in the input MOVDs. Specifically, the first part at the left side of Eq. 22 calculates
the cost of sorting all events in order at line 4 of Algorithm 2. There are 4n events in total,
and sorting them in order takes 4n x 1g(4n) time. Then, the second part at the left side of
Eq. 22 indicates the cost of maintaining status structures by inserting/deleting OVRs. There
are 2n start and end events handled by Algorithm 3. If status structures are organized as
a balanced search tree that sorts OVRs in order by their start x-coordinates, inserting or
deleting an OVR from the status can be completed in O(Ign) time. Thus, the total cost
of maintaining the status is 2 x 2n x 1g(2n) as well. If status structures record the start
and end x-coordinates of OVRs, a range specified by the points that are either immediately
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*(4)

(a) Additively (b) Multiplicatively (c) An OVD of two
weighted Voronoi dia-
grams.

Fig.8 Weighted Voronoi diagrams in Euclidean space (the numbers indicate weights)

smaller than the minimum or greater than the maximum x-coordinate of the current OVR
can be figured out in O (Ign) time. The OVRs, whose event points are located at the range,
are potentially required to overlap the current OVR. Moreover, let 6 be the cost of OVR
overlapping computation, the cost of calculating the overlapped regions is 6 x n?, because
there could be n? OVRs in the output MOVD.

6.4 MBRB approach

According to the variety of weight functions specified in the query inputs, various Voronoi
diagrams are generated by the VD Generator. In addition to the ordinary Voronoi diagrams,
two typical weighted Voronoi diagrams are displayed in Fig. 8. The generation methods of
additively and multiplicatively Voronoi diagrams have been presented in [4, 13, 28, 33].

| An MOVD in RRB
| OVR | Region, <pi',--pn
IOVRm Region,, [p¥,...pn >

L — = ———

| OVR, [ MBR; |<p¥,.p2

| OVRn, | MBRy, [<Pns-Pn >

Fig.9 Data structure
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More practical Voronoi diagrams, such as network Voronoi diagrams, can be found in [2,
35].

Although the generation methods of weighted Voronoi diagrams have been extensively
studied, efficiently maintaining the shape of OVRs is difficult since they are not in regular
shapes. In general, their boundaries have to be modelled by a number of curves. More
importantly, overheads of overlapping region calculation would be highly expensive due to
the complexity of boundary representation.

Algorithm 4 MBRBHandler(e, Current, Other, Result)

1: if e is a start event then

2 Insert e.ovr into Current

3 for ovr € Other do

4 if Rangex(e.ovr) (| Rangex(ovr) # & then
5: mbr =e.ovr. MBR () ovr.MBR

6 pois = e.ovr.pois U ovr.pois

7 Result.append(< mbr, pois >)

8 end if

9: end for

10: else

11: Remove e.ovr from Current /* e is an end event */
12: end if

13: return

To overcome this difficulty, we propose the MBRB approach that combines Algorithm 2
with an alternative event handler, MBRBHandler, for the overlap operation. The MBRB
approach is motivated by an observation that the shapes of OVRs are not used in Optimizer.
Instead, the POI locations and their weights are the criteria for optimal location selection;
therefore, we set the Minimum Bounding Rectangles (MBR) of OVRs as their shapes in
this approach. Two OVRs will be treated as overlapped if their MBRs are overlapped. This
approach is able to significantly reduce the cost of the overlap operation by simplifying
boundary maintenance and avoiding real region overlapping calculation (line 5 in Algo-
rithm 3 is replaced by line 5 in Algorithm 4); however, the approach suffers from the issue
that unnecessary OVRs (false positives which are not really overlapped) would be appended
to the new MOVD.

The data structure used in MBRBHandler is shown in Fig. 9. An OVR is indicated as
<MBR, pois>, where an M BR is comprised of minimum and maximum points on the
x and y axes, and pois is a list of objects associated with the OVR. The MBRBHandler
is described in Algorithm 4. In particular, the new MOVD (Result) is initialized to be
an empty set in Algorithm 2. When a start event occurs, the MBRBHandler only detects
whether two MBRs are overlapped. If this is the case, the MBRs are overlapped and the
objects associated with the two OVRs are merged. The new OVR is appended to Result.
The final branch remains unchanged.

Compared to the RRB approach, the complexity of region overlapping 6 decreases in
constant time, but the size of output / increases, the performance impact of which is difficult
to evaluate. The upper bound of I is n?; therefore, the complexity of the MBRB approach
becomes O (n?) in the worst case.

It is worth noting that the MBRB solution is correct because the results of the MBRB
approach are a “superset” of the results of the RRB approach. First, given any element

@ Springer



Geoinformatica (2019) 23:105-161 125
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< vregion, pois > generated by the RRB approach, there must be an element <
mbr, pois > in the result set of the MBRB solution, where mbr contains all locations in
region. The MBRB solution does not discard any location from the search space of the
RRB solution. Second, the MBRB solution preserves all object groups (pois) generated by
the RRB solution. If two regions are overlapped, their MBRs must overlap each other, and
their associated object group is output by the MBRB solution.

Moreover, the basic principle of our solutions is that the search space is decomposed into
a number of OVRs, in which a locally optimal location is found by Optimizer; however, the
shapes of OVRs are not calculated in the MBRB approach. How does the MBRB solution
determine an optimal location in an OVR?

The MBRB solution does not limit the locally optimal location in a particular OVR.
Instead, we look for it in the entire search space. As shown in Fig. 10, if an optimal location
Ly is found in OV Ry, Ly will undoubtedly be appended to the candidate list. If the optimal
location L; is outside of OV R;, according to Theorem 8, L; must be located in another
OVR, for example OV R;, which must have an optimal location L ;. L; must be identical
or better than L;. Appending both of them to the candidate list does not change the global
optimum since only the best one will be returned as the query result. Thus, appending L; to
the candidate list does not change the global optimum.

6.5 A cost-bound approach in optimizer

An optimal location ¢ that minimizes MW G D(q, E, ¢', o) is found in the third step of the
proposed framework. The framework does not specify a weight function for type weight
calculation; however, we mainly focus on a multiplicatively-based weight function, which
is one of the practical methods used in real applications. For example, the residential loca-
tion selection problem displayed in Fig. 1 uses a multiplicatively-based weight function. If
other weight functions are required in queries, a specific algorithm in the Optimizer module
is needed (See Fig. 6). The proposed cost-bound approach that utilizes the Fermat-Weber
techniques can be used for cases of additively-based and multiplicatively-based weight func-
tions, because the case of the additively-based weight function is a simplified case of the
multiplicatively-based weight function, in which all type weights are fixed at 1.

If the type and object weight functions can be combined and represented by a
multiplicatively-based weight function (e.g., applying multiplicatively-based weight func-
tions to both type and object weights), the problem of finding an optimal location in
each OVR in Euclidean space is converted into a typical Fermat-Weber problem in a d-
dimensional space. The objects associated with OVRs are the points in the Fermat-Weber
problem. The weights of the points are specified by the type weight function ¢’. The
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object weights are integrated into the distance from locations to the points. As mentioned
in Section 3.2, the problem has been solved theoretically. The optimal location in three-
point cases and multiple-collinear-point cases can be found in constant and linear time,
respectively. An approximate iterative approach has been proposed for other cases [48].

In the RRB and MBRB approaches, we observe that a large number of OVRs will be
created by MOVD Overlapper (see Theorem 7). The number of the Fermat-Weber problems
increases rapidly when the number of objects grows. A basic approach is to sequentially
calculate the optimal locations of these Fermat-Weber problems and select the best one as
the query result; however, applying the iterative method to the Fermat-Weber problems is
very expensive. Therefore, we propose a cost-bound approach in which an optimal cost is set
as a global lower bound. During the processing of a Fermat-Weber problem, a local lower
bound of the cost in each iteration will be calculated. If the local lower bound is greater
than the global lower bound, no matter how many iterations will be processed, its local
optimal cost cannot be better than the global lower bound. Thus the following iterations can
be avoided, even though the stopping condition has not been satisfied.

Algorithm 5 CostBoundApproach(E, ¢/, o, y)

1: Cbound =00,l=<0,0>

2: for G; € E do

3 Initialize /; to the center of G;

4: if |G;| = 3 or G; is a collinear case then

5: Calculate the optimal location /; of G;

6 else

7 Let G; =< p{, p5,.... py >

8 Calculate the optimal location [’ of < pi', p§ >
9: if WGD(', {p{, p3}, ¢', 0) > Cbound then
10: Continue
11: end if

12: repeat

13: l; =f(;, G;) /*Iterating, see Eq. 4%/

14: Lbound =10b(l;) /* see Eq. 7 */
15: until y is satisfied or Lbound = Cbound
16: end if

17: Cost = WGD(l;, G, ¢', o)
18: if Chbound > Cost then
19: Cbound = Cost

20: =1

21: end if

22: end for

23: return /

As shown in Algorithm 5, the proposed cost-bound approach receives a set of object groups
E = {Gy, ..., G,}, a type weight function ¢’, object weight functions o, and a stopping
condition y. The distance from a location to points is calculated by their Euclidean distance
and o. The number of points in the Fermat-Weber problems (|G;|, 1 < i < n) is unneces-
sarily fixed. In particular, the global lower bound, Cbound, is initialized to infinity (in line
1) and reduced to the minimum cost of the optimal location found so far (in line 19). The
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algorithm sequentially checks the Fermat-Weber problems, each of which have a local opti-
mal location found in lines 4-16. In the branch of the iterative method inside the loop, an
optimal location of the first two points in Gj; is first detected in lines 8-11. If a better result
of G; potentially exists, a local lower bound is calculated in each iteration in line 14. If the
local lower bound is greater than Chound, the iteration will stop in line 15. The complexity
of Algorithm 5 is O(n x |E|), where o denotes the average number of iterations pro-
cessed for Fermat-Weber problems. The Cost-bound approach can also be used in the SSC
solution.

6.6 Correctness of RRB and MBRB solutions
Theorem 1 The proposed RRB and MBRB solutions work correctly to MOLQ queries.

The correctness of RRB and MBRB solutions are supported by the following points.
1. RRB and MBRB can produce MOVD based on the input datasets because the MOVD
overlapping operator @ is closed under the MOVD space (See Theorem 19). Two or more
MOVD can be overlapped by using é. 2. Any MOVD fully covers the entire search space
(See theorem 8). RRB and MBRB consider all possible location in the search space during
the query evaluation. 3. For a specific OVR, any Fermat-Weber method is used for locating
an optimal location as a sub-optimal location; and the global optimal result is returned by
comparing all of these sub-optimal locations.

In the worst case, the computational complexity of RRB and MBRB solutions is O (n%),
where n denotes the number of objects in each type, and k denotes the number of object
types(See Theorem 7).

7 MOLQ updating algorithms

In this section, we first present a baseline approach to address the Multi-Criteria Optimal
Location Query updating problem by incrementally updating Voronoi diagrams. The query
result can be obtained by feeding the newly generated Voronoi diagrams into MOVD-based
solutions. Then, we develop an MOVD-based incremental updating model in Section 7.2.
Differing from the MOVD model that studies MOVD generation methods and properties of
the MOVD overlapping operation, the proposed MOVD updating model explores updating
operations over MOVDs when there are changes in input object sets. Finally, due to high
cost of the MOVD overlapping operation, we propose an advanced solution that incremen-
tally updates MOVDs in Section 7.3. Theoretically, all types of MOVDs can be processed by
the proposed object insertion and deletion algorithms; however, we mainly investigate ordi-
nary MOVDs generated by ordinary Voronoi diagrams for simplicity and better illustration
in this paper. Our methods can be extended to other types of MOVDs. After a new MOVD
is generated, the global optimum can be found by comparing the local optimal locations in
updated OVRs with the last query result.

7.1 Voronoi-diagram-based incremental updating approach
Similarly with the MOVD-based solutions, an intuitive approach that utilizes the MOVD
Overlapper and Optimizer can be used to address the MOLQ updating problem. In particu-

lar, the approach updates Voronoi diagrams by applying changes to the Voronoi diagrams of
initial object sets [21-23, 34, 40]. These Voronoi diagrams are assumed to be preserved as
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intermediate results when MOLQ was evaluated using MOVD-based solutions [56]. Then,
MOVD Overlapper is used to overlap the updated Voronoi diagrams. Either the Real Region
as Boundary (RRB) or Minimum Bounding Rectangle as Boundary (MBRB) solution can
be employed as an MOVD overlapping approach. Last, Optimizer outputs the global optical
location as the query result by utilizing Fermat-Weber techniques to sequentially scan all
OVRs in the newly generated MOVD.

However, the approach suffers from high cost of MOVD overlapping operations (in
MOVD Overlapper). First, the cost of MOVD generation is high; the computational com-
plexity of the RRB approach depends on the complexity of Voronoi diagrams and the
number of Voronoi diagrams overlapped. Second, although the MBRB approach can avoid
real region calculation during the overlapping process, a large number of false positives are
produced as a side effect, which may incur significant overhead in both the overlapping pro-
cess over the next Voronoi diagram and Optimizer. The false positives are the regions that
cannot have any global optimal location, but output as candidates to the next step. Third,
in the final step, Optimizer sequentially scans all the regions in the MOVD produced by
MOVD Overlapper, and selects the best one as the query result. But, in some cases, there
are only a limited number of objects updated; most of the local optimal locations are not
changed in the new query. Therefore, to reduce the cost of query re-evaluation, we proposed
an efficient MOLQ updating solution that updates the MOVD without MOVD overlapping
calculation.

7.2 MOVD incremental updating model

Before introducing our advanced solution, we developed an MOVD incremental updating
model by investigating MOVDs over two binary operators. The model not only demon-
strates the properties of MOVD updating operations, but also provides theoretical basis for
our proposed solution.

7.2.1 MOVD updating space

Given a family of object sets U = {Uj, ..., U,} (assume there are n object types in the
universal object sets), the MOVD updating space is

UMOVD)={MOVDE) |E={Py,.., Py}, Py CUj,.., P, CU,} (23)

U(M OV D) includes all possible MOVDs generated by any combination of objects in
U. For simplicity, M OV D({ P;}) is a simple form of MOV D(E) if VP; € E, P; # P},
P; = (. By the definition of the MOVD model, M OV D({#}) = R (the entire space).

Theorem 2 The number of MOVDs existing in U(M OV D) is

n (Ui

wwovo) =[] ('U,”) 24)

i1 \j=o >/

Since the MOVD is unique with a given family of object sets, the number of MOVDs
in the updating space is equal to the number of possible object combinations existing in U.

Given an object set P; € U;, Z‘filo (Ilf ‘) specifies the total number of ways of picking j
objects from U;. If j = 0, then P; = §. If U contains n object sets, then, |[U(M OV D)| is

equal to the product of the number of object combinations in each object set.
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7.2.2 Object insertion and deletion operations over MOVDs

We define two binary operators + and — for object insertion and deletion operations over
MOVDs, respectively. The binary operators receive an MOVD and an object sets inserted
or deleted to the MOVD, and return a new MOVD. + is an inverse operation of —. An
MOVD can be either the left operand or the right operand of the two operators; however,
for simplicity and better explanation, we assume that an MOVD is always used as the left
operand, and + and — are left associative in this paper. + and - can be defined as follows.

MOVD(E)+ Q =MOVD(EH Q)
MOVD(E) =~ Q = MOVD(EH Q) (25)

Theorem 3 Changing the order of + and — does not change the result if updated object
sets do not have common objects. Moreover, first performing set operations on updated
object sets could reduce the cost of MOVD updating operations by minimizing the size of
the operands.

MOVD(E)4—Qi;Qj=MOVD(E) = Q0 + 0; fOinQ;=0 (26)
MOVD(E) + Qi = Q; = MOVD(E) + (0:\Q;) ~ (2;\0i) 7

Proof 1f there exists an object p in Q; N Q;, either side of Eq. 26 is invalid. If p € E, we
cannot perform MOV D(E) + Q;; if p ¢ E, — is invalid.

If0;NQ; =0 let Qi ={gl....q"} and Q; = {q}, > ¢}, by the definitions of
object insertion and deletion operations in Eqs. 12 and 14 (and the properties of union and
complement operations over sets), we can get

MOVD(E)+ Q; = Q; = MOVD(E)B{q/} B ..B {g/"} B{q}} B..B{g"}
= MOVD(E)B{¢}}B..B{¢!} B {g} @ .. B {¢]"}

=MOVD(E) - Q; + 0; (28)

If3p € Q; N Q;, then
MOVD(E) + Qi =~ Q; = MOVD(E) + (Qi\{p}) = (2;\{r}) 29)
So, Eq. 27 can be proven by applying all objects in Q; N Q; to Eq. 29. Equation 27 is
useful to eliminate shared objects in Q; N Q ; before updating MOV Ds. O

Theorem 4 Sequentially inserting/deleting object sets into/from an MOVD is equivalent to
updating them at one time if there is not any object shared by any two object sets.

MOVD(E)+ Q1+ .4+ Q.= MOVD(E) + (Q1 U ... U Qy)
MOVD(E) = Q1 =~ ...~ Q, = MOVD(E) = (Q1 U ... U Q)
FOinQj=0, 1<i,jsn i#]j (30
This can be easily proven by using the definitions of object insertion and deletion oper-
ations in Eqgs. 12 and 14 (and the properties of union and complement operations over

sets).

Theorem 5 Closure: the universal MOVD updating space is closed under operators + and
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’ Object Datasets for Updating
Q

1. MOVD Updater

Insertion || Deletion

I MOLQ (£, ¢, o)

Object Datasets
={P, ..., P} MOVD(E)
Object Weight MOVD (EF Q)
Fun